Deletions in the putative cell receptor-binding domain of Sindbis virus strain MRE16 E2 glycoprotein reduce midgut infectivity in Aedes aegypti.

نویسندگان

  • Kevin M Myles
  • Dennis J Pierro
  • Ken E Olson
چکیده

The Sindbis virus (Alphavirus; Togaviridae) strain MRE16 efficiently infects Aedes aegypti mosquitoes that ingest a blood meal containing 8 to 9 log(10) PFU of virus/ml. However, a small-plaque variant of this virus, MRE16sp, poorly infects mosquitoes after oral infection with an equivalent titer. To determine the genetic differences between MRE16 and MRE16sp viruses, we have sequenced the MRE16sp structural genes and found a 90-nucleotide deletion in the E2 glycoprotein that spans the 3' end of the coding region for the putative cell-receptor binding domain (CRBD). We examined the role of this deletion in oral infection of mosquitoes by constructing infectious clones pMRE16icDeltaE200-Y229 and pMRE16ic, representing MRE16 virus genomes with and without the deletion, respectively. A third infectious clone, pMRE16icDeltaE200-C220, was also constructed that contained a smaller deletion extending only to the 3' terminus of the CRBD coding region. Virus derived from pMRE16ic replicated with the same efficiency as parental virus in vertebrate (BHK-21) and mosquito (C6/36) cells and orally infected A. aegypti. Viruses derived from pMRE16icDeltaE200-Y229 and pMRE16icDeltaE200-C220 replicated 10- to 100-fold less efficiently in C6/36 and BHK-21 cells than did MRE16ic virus. Each deletion mutant poorly infected A. aegypti and dramatically reduced midgut infectivity and dissemination. However, all viruses generated nearly equal titers (approximately 6.0 log(10) PFU/ml) in mosquitoes 4 days after infection by intrathoracic inoculation. These results suggest that the deleted portion of the E2 CRBD represents an important determinant of MRE16 virus midgut infectivity in A. aegypti.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic determinants of Sindbis virus mosquito infection are associated with a highly conserved alphavirus and flavivirus envelope sequence.

Wild-type Sindbis virus (SINV) strain MRE16 efficiently infects Aedes aegypti midgut epithelial cells (MEC), but laboratory-derived neurovirulent SINV strain TE/5'2J infects MEC poorly. SINV determinants for MEC infection have been localized to the E2 glycoprotein. The E2 amino acid sequences of MRE16 and TE/5'2J differ at 60 residue sites. To identify the genetic determinants of MEC infection ...

متن کامل

Comparison of the transmission potential of two genetically distinct Sindbis viruses after oral infection of Aedes aegypti (Diptera: Culicidae).

Within mosquitoes, arboviruses encounter barriers to infection and dissemination that are critical determinants of vector competence. The molecular mechanisms responsible for these barriers have yet to be elucidated. The prototype Sindbis (SIN) strain, AR339, and viruses derived from this strain, such as TR339 virus, have limited infection and transmission potential in the medically important a...

متن کامل

Epistatic Roles of E2 Glycoprotein Mutations in Adaption of Chikungunya Virus to Aedes Albopictus and Ae. Aegypti Mosquitoes

Between 2005 and 2007 Chikungunya virus (CHIKV) caused its largest outbreak/epidemic in documented history. An unusual feature of this epidemic is the involvement of Ae. albopictus as a principal vector. Previously we have demonstrated that a single mutation E1-A226V significantly changed the ability of the virus to infect and be transmitted by this vector when expressed in the background of we...

متن کامل

Development of a new Sindbis virus transducing system and its characterization in three Culicine mosquitoes and two Lepidopteran species.

Alphavirus transducing systems (ATSs) are alphavirus-based tools for expressing genes in insects. Here we describe an ATS (5'dsMRE16ic) based entirely on Sindbis MRE16 virus. GFP expression was used to characterize alimentary tract infections and dissemination in three Culicine and two Lepidopteran species. Following per os infection, 5'dsMRE16ic-EGFP efficiently infected Aedes aegypti and Cule...

متن کامل

Proteomic Identification of Dengue Virus Binding Proteins in Aedes aegypti Mosquitoes and Aedes albopictus Cells

The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV) through receptors of midgut epithelial cells. The envelope protein (E) of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 77 16  شماره 

صفحات  -

تاریخ انتشار 2003